Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(10): 2703-2720, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37022051

RESUMEN

In this perspective, the various measures of electron correlation used in wave function theory, density functional theory and quantum information theory are briefly reviewed. We then focus on a more traditional metric based on dominant weights in the full configuration solution and discuss its behavior with respect to the choice of the N-electron and the one-electron basis. The impact of symmetry is discussed, and we emphasize that the distinction among determinants, configuration state functions and configurations as reference functions is useful because the latter incorporate spin-coupling into the reference and should thus reduce the complexity of the wave function expansion. The corresponding notions of single determinant, single spin-coupling and single configuration wave functions are discussed and the effect of orbital rotations on the multireference character is reviewed by analyzing a simple model system. In molecular systems, the extent of correlation effects should be limited by finite system size and in most cases the appropriate choices of one-electron and N-electron bases should be able to incorporate these into a low-complexity reference function, often a single configurational one.

2.
J Comput Chem ; 44(3): 406-421, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35789492

RESUMEN

Quantum computers are special purpose machines that are expected to be particularly useful in simulating strongly correlated chemical systems. The quantum computer excels at treating a moderate number of orbitals within an active space in a fully quantum mechanical manner. We present a quantum phase estimation calculation on F2 in a (2,2) active space on Rigetti's Aspen-11 QPU. While this is a promising start, it also underlines the need for carefully selecting the orbital spaces treated by the quantum computer. In this work, a scheme for selecting such an active space automatically is described and simulated results obtained using both the quantum phase estimation (QPE) and variational quantum eigensolver (VQE) algorithms are presented and combined with a subtractive method to enable accurate description of the environment. The active occupied space is selected from orbitals localized on the chemically relevant fragment of the molecule, while the corresponding virtual space is chosen based on the magnitude of interactions with the occupied space calculated from perturbation theory. This protocol is then applied to two chemical systems of pharmaceutical relevance: the enzyme [Fe] hydrogenase and the photosenzitizer temoporfin. While the sizes of the active spaces currently amenable to a quantum computational treatment are not enough to demonstrate quantum advantage, the procedure outlined here is applicable to any active space size, including those that are outside the reach of classical computation.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Algoritmos , Preparaciones Farmacéuticas
3.
J Chem Theory Comput ; 18(12): 7001-7023, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36355616

RESUMEN

Computational chemistry is an essential tool in the pharmaceutical industry. Quantum computing is a fast evolving technology that promises to completely shift the computational capabilities in many areas of chemical research by bringing into reach currently impossible calculations. This perspective illustrates the near-future applicability of quantum computation of molecules to pharmaceutical problems. We briefly summarize and compare the scaling properties of state-of-the-art quantum algorithms and provide novel estimates of the quantum computational cost of simulating progressively larger embedding regions of a pharmaceutically relevant covalent protein-drug complex involving the drug Ibrutinib. Carrying out these calculations requires an error-corrected quantum architecture that we describe. Our estimates showcase that recent developments on quantum phase estimation algorithms have dramatically reduced the quantum resources needed to run fully quantum calculations in active spaces of around 50 orbitals and electrons, from estimated over 1000 years using the Trotterization approach to just a few days with sparse qubitization, painting a picture of fast and exciting progress in this nascent field.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Descubrimiento de Drogas , Electrones , Preparaciones Farmacéuticas
4.
J Chem Theory Comput ; 17(10): 6092-6104, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34549947

RESUMEN

We present a study of fixed- and partial-node approximations in Slater determinant basis sets, using full configuration interaction quantum Monte Carlo (FCIQMC) to perform sampling. Walker annihilation in the FCIQMC method allows partial-node simulations to be performed, relaxing the nodal constraint to converge to the FCI solution. This is applied to ab initio molecular systems, using symmetry-projected Jastrow mean-field wave functions for complete active space (CAS) problems. Convergence and the sign problem within the partial-node approximation are studied, which is shown to eventually be limited in its use due to the large walker populations required. However, the fixed-node approximation results in an accurate and practical method. We apply these approaches to various molecular systems and active spaces, including ferrocene and acenes. This also provides a test of symmetry-projected Jastrow mean-field wave functions in variational Monte Carlo for a new set of problems. For trans-polyacetylene molecules and acenes, we find that the time to perform a constant number of fixed-node FCIQMC iterations scales as O(N1.44) and O(N1.75), respectively, resulting in an efficient method for CAS-based problems that can be applied accurately to large active spaces.

5.
J Chem Phys ; 153(16): 164120, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33138433

RESUMEN

We present a stochastic approach to perform strongly contracted n-electron valence state perturbation theory (SC-NEVPT), which only requires one- and two-body reduced density matrices, without introducing approximations. We use this method to perform SC-NEVPT2 for complete active space self-consistent field wave functions obtained from selected configuration interaction, although the approach is applicable to a larger class of wave functions, including those from orbital-space variational Monte Carlo. The accuracy of this approach is demonstrated for small test systems, and the scaling is investigated with the number of virtual orbitals and the molecule size. We also find the SC-NEVPT2 energy to be relatively insensitive to the quality of the reference wave function. Finally, the method is applied to the Fe(II)-porphyrin system with a (32e, 29o) active space and to the isomerization of [Cu2O2]2+ in a (28e, 32o) active space.

6.
J Chem Phys ; 153(2): 024109, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668948

RESUMEN

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

7.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32716189

RESUMEN

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

8.
J Chem Phys ; 151(21): 211102, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31822084

RESUMEN

The computationally expensive evaluation and storage of high-rank reduced density matrices (RDMs) has been the bottleneck in the calculation of dynamic correlation for multireference wave functions in large active spaces. We present a stochastic formulation of multireference configuration interaction and perturbation theory that avoids the need for these expensive RDMs. The algorithm presented here is flexible enough to incorporate a wide variety of active space reference wave functions, including selected configuration interaction, matrix product states, and symmetry-projected Jastrow mean field wave functions. It enjoys the usual attractive features of Monte Carlo methods, such as embarrassing parallelizability and low memory costs. We find that the stochastic algorithm is already competitive with the deterministic algorithm for small active spaces, containing as few as 14 orbitals. We illustrate the utility of our stochastic formulation using benchmark applications.


Asunto(s)
Algoritmos , Teoría Cuántica , Método de Montecarlo
9.
J Chem Phys ; 151(17): 174103, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703483

RESUMEN

We present an approach to combining selected configuration interaction (SCI) and initiator full configuration interaction quantum Monte Carlo (i-FCIQMC). In the current i-FCIQMC scheme, the space of initiators is chosen dynamically by a population threshold. Here, we instead choose initiators as the selected space (V) from a prior SCI calculation, allowing substantially larger initiator spaces for a given walker population. While SCI+PT2 adds a perturbative correction in the first-order interacting space beyond V, the approach presented here allows a variational calculation in the same space and a perturbative correction in the second-order interacting space. The use of a fixed initiator space reintroduces population plateaus into FCIQMC, but it is shown that the plateau height is typically only a small multiple of the size of V. Thus, for a comparable fundamental memory cost to SCI+PT2, a substantially larger space can be sampled. The resulting method can be seen as a complementary approach to SCI+PT2, which is more accurate but slower for a common selected/initiator space. More generally, our results show that approaches exist to significantly improve initiator energies in i-FCIQMC while still ameliorating the fermion sign problem relative to the original FCIQMC method.

10.
J Chem Theory Comput ; 15(6): 3537-3551, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31050430

RESUMEN

We propose the use of preconditioning in FCIQMC which, in combination with perturbative estimators, greatly increases the efficiency of the algorithm. The use of preconditioning allows a time step close to unity to be used (without time-step errors), provided that multiple spawning attempts are made per walker. We show that this approach substantially reduces statistical noise on perturbative corrections to initiator error, which improve the accuracy of FCIQMC but which can suffer from significant noise in the original scheme. Therefore, the use of preconditioning and perturbatively corrected estimators in combination leads to a significantly more efficient algorithm. In addition, a simpler approach to sampling variational and perturbative estimators in FCIQMC is presented, which also allows the variance of the energy to be calculated. These developments are investigated and applied to benzene (30e, 108o), an example where accurate treatment is not possible with the original method.

11.
J Chem Theory Comput ; 15(3): 1728-1742, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30681844

RESUMEN

Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the past decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method allows one to systematically approach the exact solution of such problems, for cases where very high accuracy is desired. The introduction of FCIQMC has subsequently led to the development of coupled cluster Monte Carlo (CCMC) and density matrix quantum Monte Carlo (DMQMC), allowing stochastic sampling of the coupled cluster wave function and the exact thermal density matrix, respectively. In this Article, we describe the HANDE-QMC code, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semistochastic adaptations. We describe our code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and a real solid (diamond). An illustrative tutorial is also included.

12.
J Chem Theory Comput ; 15(1): 178-189, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30525592

RESUMEN

We perform excited-state variational Monte Carlo and diffusion Monte Carlo calculations using a simple and efficient wave function ansatz. This ansatz follows the recent variation-after-response formalism, accurately approximating a configuration interaction singles wave function as a sum of only two nonorthogonal Slater determinants and further including important orbital relaxation. The ansatz is used to perform diffusion Monte Carlo calculations with large augmented basis sets, comparing to benchmarks from near-exact quantum chemical methods. The significance of orbital optimization in excited-state diffusion Monte Carlo is demonstrated, and the excited-state optimization procedure is discussed in detail. Diffuse excited states in water and formaldehyde are studied, in addition to the formaldimine and benzonitrile molecules.

13.
J Chem Theory Comput ; 14(7): 3532-3546, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29897746

RESUMEN

We formulate a general, arbitrary-order stochastic response formalism within the full configuration interaction quantum Monte Carlo framework. This modified stochastic dynamic allows for the exact response properties of correlated multireference electronic systems to be systematically converged upon for systems far out of reach of traditional exact treatments. This requires a simultaneous coupled evolution of a response state alongside the zero-order state, which is shown to be stable, nontransient, and unbiased. We demonstrate this with application to the static dipole polarizability of molecular systems and, in doing so, resolve a discrepancy between restricted and unrestricted high-level coupled-cluster linear response results which were the high-accuracy benchmark in the literature.

14.
J Chem Phys ; 148(22): 221101, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29907047

RESUMEN

We present a perturbative correction within initiator full configuration interaction quantum Monte Carlo (i-FCIQMC). In the existing i-FCIQMC algorithm, a significant number of spawned walkers are discarded due to the initiator criteria. Here we show that these discarded walkers have a form that allows the calculation of a second-order Epstein-Nesbet correction, which may be accumulated in a trivial and inexpensive manner, yet substantially improves i-FCIQMC results. The correction is applied to the Hubbard model and the uniform electron gas and molecular systems.

15.
J Phys Condens Matter ; 30(19): 195901, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29582782

RESUMEN

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...